

1
Final Report: Weight-Stationary 8x8 Systolic Array for VGG16

Quantization-Aware Training
Ashish Murthy ● Ben Zhang ● Hojin Chang ● Karan Humpal ● Nithin Baimeedi

Introduction
Deep convolutional neural networks (CNNs) excel at vision tasks but are costly in energy, memory, and
computation. These limitations hinder their deployment on embedded and edge devices. We present a
weight-stationary, 8x8 systolic array accelerator for VGG16 with quantization-aware training and targeted
compression to address these constraints.
Our approach integrates structured and unstructured pruning to remove redundant weights and applies
Huffman encoding to reduce off-chip data transfers. This design is implemented on the Cyclone IV GX
FPGA and significantly cuts computational overhead and energy use while maintaining state-of-the-art
accuracy.
We deliver efficient, high-performance CNN inference suitable for space, power, and cost-constrained
environments by uniting pruning, quantization, and compression.

Part 1: Quantization-Aware Training

●​ We trained a modified VGG16 model with quantization-aware training using 4-bit input
activations and weights. The 27th convolutional layer was reduced to 8 input and 8 output
channels, and batch normalization was removed for the modified layer. The computed
psum_recovered values, including ReLU, were compared with precooked inputs for the next
layer.

Results
●​ Achieved validation accuracy of 90.79% with the modified VGG16 model.
●​ Verified psum_recovered values with an error of 8.2 × 10^-4, meeting the required threshold of

10^-3.
Conclusions

●​ Reducing the channels for the selected convolution layer and removing batch normalization
allowed efficient mapping onto the systolic array without tiling while maintaining high accuracy.
Quantization-aware training ensured robust results even with 4-bit quantization.

Part 2: RTL Core Design
Overview

●​ We designed and connected components, including the 8x8 systolic array with MAC units,
scratchpad memories for activations, weights, and psums, L0 buffer, output FIFO, and a Special
Function Processor (SFP) for accumulation and ReLU. The corelet.v module integrated all
components except SRAMs.

2
Results

●​ Successfully connected all components without compilation errors.
Conclusions

●​ The modular design ensured seamless integration of all components and facilitated FPGA
mapping. The successful compilation validated the functional design.

Part 3: Testbench Generation
Overview

●​ We created a testbench to verify the squeezed layer (8x8 channels). The testbench performed
input SRAM loading, kernel data loading to PE registers, execution in the PE array, psum
movement, accumulation, ReLU, and output file generation. We compared the results with the
expected outputs.

Results
●​ Stimulus (input.txt, weight.txt) and expected output (output.txt) files were generated.
●​ Achieved zero verification errors when comparing RTL outputs to expected results.

Conclusions
●​ The testbench verified all stages of the computation pipeline with high reliability. Successful

verification demonstrated the correctness of the design.

Part 4: FPGA Mapping
Overview
The corelet.v module was prepared for mapping to the Cyclone IV GX FPGA using Quartus Prime 19.1.
Synthesis, placement, and routing were performed, and performance metrics, including frequency, power,
and TOPS-related benchmarks, will be measured.

Part 5: Reconfigurable PE Design
Overview

●​ A reconfigurable PE was designed to support weight and output stationary modes. Mux-based
routing shared input, weight, and output registers across modes. The design included an IFIFO for
weight data and verified functionality using the first convolutional layer's input, weight, and
activations.

Results
●​ Achieved zero verification errors when comparing RTL outputs to PyTorch simulation results.

Conclusions
●​ The reconfigurable PE provided flexibility for different workloads, maintaining functional

accuracy and efficient data flow management.

3
Part 6: +Alpha Enhancements
Overview
The project included several +alpha enhancements to improve functionality and efficiency:

1.​ Unstructured Pruning - Gating:
a.​ Unstructured pruning removes individual weights within each layer, increasing sparsity

by setting specific parameters to zero. Although it achieves high sparsity, it generates
irregular patterns that can complicate hardware implementation. We eliminate redundant
weights, allowing the hardware to bypass computations associated with these pruned
elements.

b.​
2.​ Huffman Encoding:

a.​ Applied Huffman encoding to compress weight data, reducing the memory footprint
significantly.

b.​ Encoding helped maximize on-chip storage, enabling faster access times and reducing the
reliance on external memory resources.

c.​

Most efficient Implemented

0000 0 0000 0

0001 01 0001 01

0010 001 0010 001

0011 000 0011 0001

3.​ Weights Stationary Time Skipping (Structured Pruning):

a.​ Structured pruning optimizes computations on a systolic array by using sparsity patterns
in convolutional filters. It eliminates sets of weights, like specific input channels, leaving
only essential values, thereby reducing data movement and arithmetic operations. A
weight-stationary approach keeps unpruned weights fixed, avoiding reloading. Focusing
on output channels enables the hardware to skip computations for pruned inputs,
improving speed in line with sparsity levels. Despite reducing parameters and
quantization, structured pruning maintains competitive accuracy, enhancing efficiency in
constrained hardware environments.

4

b.​

Alpha Results

●​ Unstructured Pruning - Gating:

Power Consumption using P = CV2 f W. S.

No Hardware Gating 30.90mW

After Hardware Gating 11.64mW

●​ Output Stationary Time Skipping (Structured Pruning):

Accuracy of VGG16 on CIFAR10 W. S. O. S.

Unpruned Full Precision 90.98%

78% Sparse Full Precision 90.77% 86.68%

78% Sparse 4bit Quantized 90.79% 87.36%

●​ Huffman Encoding:

Data Compression Ratio

Activation 2.49

Weights 1.16

5
Alpha Conclusions

●​ We achieve significant efficiency gains without sacrificing accuracy by integrating unstructured
pruning, Huffman encoding, and output stationary time skipping (structured pruning)..
Unstructured pruning with gating removes individual weights, cutting unnecessary computations
and power use. Huffman encoding compresses weights, reducing memory reliance and access
times. Structured pruning streamlines the systolic array’s workload, translating weight sparsity
directly into speedups. These techniques maintain competitive accuracy for quantized VGG16,
enabling high-performance, energy-efficient deep learning on resource-constrained platforms.

Summary Table

Metric OPs Frequency
Dynamic

Power GOPs / s GOPs / W
Logic

Elements

VGG16 128 118.84MHz 30.90mW 15.21 0.00492 17368

Conclusion

We created a weight-stationary 8x8 systolic array accelerator tailored for a quantized VGG16 model,
achieving above 90% accuracy despite notably lower data precision and hardware complexity. By
employing quantization-aware training, reducing channels, and eliminating batch normalization, we
enabled efficient mapping to the systolic array without tiling. Extensive testbench verification confirmed
functional correctness.

Additional improvements, such as structured and unstructured pruning and Huffman encoding, have
lowered power consumption, memory usage, and computational demands while maintaining accuracy.

In the future, we can investigate more rigorous pruning strategies, enhanced quantization approaches, and
sophisticated compression methods to improve efficiency further and adapt to increasingly limited
hardware resources.

	Final Report: Weight-Stationary 8x8 Systolic Array for VGG16 Quantization-Aware Training
	Part 1: Quantization-Aware Training
	Results
	Conclusions

	Part 2: RTL Core Design
	Overview
	Conclusions

	Part 3: Testbench Generation
	Overview
	Results
	Conclusions

	Part 4: FPGA Mapping
	Overview

	
	Part 6: +Alpha Enhancements
	Overview
	
	
	
	
	
	Alpha Results
	
	
	
	
	Alpha Conclusions

	Summary Table

